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1 Department of Intercellular Communication, Center for Translational and Clinical Research,
University of Zagreb School of Medicine, Šalata 2, 10000 Zagreb, Croatia; dora.hrestak@mef.hr (D.H.);
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Abstract: The skin microbiota represents an ecosystem composed of numerous microbial species
interacting with each other, as well as with host epithelial and immune cells. The microbiota provides
health benefits to the host by supporting essential functions of the skin and inhibiting colonization
with pathogens. However, the disturbance of the microbial balance can result in dysbiosis and
promote skin diseases, such as atopic dermatitis (AD). This review provides a current overview
of the skin microbiota involvement in AD and its complex interplay with host immune response
mechanisms, as well as novel therapeutic strategies for treating AD focused on restoring skin
microbial homeostasis.
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1. Human Skin Microbiota

All microorganisms residing in a multicellular host form its microbiota. Microbiota
helps to maintain the balance (homeostasis) of the host system, contributes to immune
responses and promotes tissue repair. Disruption of microbiota balance often results
in inflammation or infection that can lead to various pathophysiological conditions and
diseases. Additionally, imbalance leads to a microbial shift, often reducing beneficial species,
and thereby causing dysbiosis. While the predominant part of the human microbiota is
located in the gastrointestinal tract, remaining microorganisms are unequally distributed
across the body, including the skin.

The skin is the largest organ of the human body, forming a protective barrier that pre-
vents infections from environmental pathogens, and regulates body temperature, prevents
water loss and triggers pain response. The human skin (Figure 1) can also be perceived as an
ecosystem, where different parts of the body represent different habitats for bacteria, fungi,
viruses and archaea. Microorganisms colonize the skin surface according to the spectrum
of preferences, forming units that contribute to the body’s immune system and protect
against other pathogenic life forms. Each microbe has adapted to the physicochemical char-
acteristics of its habitat—a behavior similar to that of Earth’s flora and fauna. In addition,
because skin has little nutritive value aside from lipids and proteins, the main requirement
for microbe survival is their utilization of resources found in the stratum corneum and/or
sebum, such as amino acids or urea [1].

Bacterial phyla which can be found on the healthy human skin are Actinobacteria,
Firmicutes, Proteobacteria and Bacteriodetes [2], with an emphasis on Staphylococcus,
Corynebacterium and Propionibacterium genera that comprise more than 60% of the bac-
terial skin population [3]. The composition of skin microbiota is highly dependent on the
characteristic physiology of the skin site, and specific bacterial taxa were found to inhabit
dry, moist and sebaceous microenvironments [4]. Dry areas (forearm, buttock, various parts

Int. J. Mol. Sci. 2022, 23, 3503. https://doi.org/10.3390/ijms23073503 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23073503
https://doi.org/10.3390/ijms23073503
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-6946-299X
https://orcid.org/0000-0001-9209-4611
https://orcid.org/0000-0002-8837-3156
https://orcid.org/0000-0002-1904-2193
https://doi.org/10.3390/ijms23073503
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23073503?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 3503 2 of 18

of the hand) are the most diverse skin sites, reported to contain greater bacterial diversity
than the gut or the oral cavity of the individual [5], and harboring numerous phylotypes
including β-Proteobacteria, Corynebacteria and Flavobacteriales [2]. Moist skin sites (nostril,
armpit, navel, toe webs, inner elbow, groin, cubital and popliteal fossa, palms and soles)
provide thermally stable, warm environments, with Corynebacteria and Staphylococci species
being the most abundant organisms that can withstand humid conditions [4]. Finally, seba-
ceous areas (forehead, retroauricular area, lateral sides of the nostrils, back) show the lowest
bacterial diversity and are populated mostly by lipophilic Propionibacteria and Staphylococci
species [3,4,6]. Although the skin microbiota encounters frequent perturbations due to the
constant environmental changes, longitudinal sampling revealed its stability over a 2-year
period, with the microbial communities at sebaceous sites being most persistent and those
at foot sites the least stable [7,8]. As opposed to bacterial communities, the composition
of fungal communities was reported similar across the body sites despite different skin
physiology [9]. Studies on fungal communities distinguish the predominance of the genus
Malassezia on healthy human skin, specifically on the chest and arms (M. globosa), the trunk
(M. sympodialis) and on facial sites (M. restricta) [9–11]. Foot sites were colonized by diverse
communities of Malassezia, Aspergillus, Cryptococcus, Rhodotorula, Epicoccum and others,
which display lower stability over time [9,12]. Several studies show that normal skin
microbiota also included Candida [12,13]. However, organisms belonging to the kingdom
of fungi represent the least abundant inhabitants of the skin [8]. In contrast to bacterial
and fungal communities, no healthy human skin core virome was found conserved among
individuals [8]. Foulongne et al. reported a metagenomic study that displayed multiple eu-
karyotic virus families, namely, Polyomaviridae, Papillomaviridae and Circoviridae [14]. A more
recent study by Hannigan et al. demonstrated the presence of Adenoviridae, Anelloviridae,
Circoviridae, Herpesviridae, Papillomaviridae and Polyomaviridae [15]. However, a core pha-
geome consisting of Propionibacterium, Staphylococcus, and Streptococcus bacteriophages
was recently identified. These phages are obligate partners to the most abundant bacterial
species and are therefore site-specific [8].
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Figure 1. Schematic representation of human skin structure consisting of three main layers: epider-
mis, dermis and subcutis. The outermost skin layer, epidermis, is composed of terminally differen-
tiated keratinocytes that enable continuous skin renewing, held together by corneodesmosomes and 
mortar lipids. Epidermis is supported by the collagen-bound dermis that provides a home for 
nerves, blood, lymph vessels, mast cells and other structures (i.e., sweat glands, hair follicles), and 
subcutis consisting of adipose tissue. Skin regions vary in terms of topography, temperature, salt 
content and acidity (pH) and are, based on their features, categorized into three major groups: moist 
sebaceous and dry. 
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Figure 1. Schematic representation of human skin structure consisting of three main layers: epidermis,
dermis and subcutis. The outermost skin layer, epidermis, is composed of terminally differentiated
keratinocytes that enable continuous skin renewing, held together by corneodesmosomes and mortar
lipids. Epidermis is supported by the collagen-bound dermis that provides a home for nerves,
blood, lymph vessels, mast cells and other structures (i.e., sweat glands, hair follicles), and subcutis
consisting of adipose tissue. Skin regions vary in terms of topography, temperature, salt content and
acidity (pH) and are, based on their features, categorized into three major groups: moist sebaceous
and dry.
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The stability of skin microbial communities varies between age groups, the diversity
being inversely proportional to maturity [16,17]. Initial colonization of the skin in newborn
babies depends greatly on the delivery mode and mother’s bacteria to which the neonates
are exposed during labor [18]. The skin microbiota of children under 12 years comprises
mostly Streptococcus, Granulicatella, Gemella, Rothia and Haemophilus bacterial genera [16],
together with highly diverse fungal communities of Ascomycota (Aspergillus, Epicoccum,
Phoma), Cladosporium and Cryptococcus, and a low abundance of Malassezia [17]. During
puberty, the structure of the skin changes, as the increased hormone levels stimulate
additional production of sebum, thus favoring the expansion of lipophilic microbiota. The
Streptococcus genus is gradually replaced with Propionibacterium and Corynebacterium, with
Malassezia as a predominate fungal constituent of adult skin microbiota [16,17].

2. Atopic Dermatitis

Atopic dermatitis (AD) is one of the most common, chronic, inflammatory skin diseases
of the modern world. Additionally known as ‘eczema’, this chronic recurrent disorder
is characterized by an intense itching sensation and eczematous lesions. Acute lesions
are manifested as bright erythema, oedema and oozing, while chronic lesions present as
xerosis, lichenification and residual dyspigmentation. In comparison to healthy controls,
both non-lesional and lesional AD skin show higher transepidermal water loss (TEWL) and
pH values [19] that corelate with disease severity and predisposition [20,21]. Distributional
and morphological characteristics generally relate to age, whilst some phenotypes show
predisposition for certain body sites. Although most frequently manifested throughout the
first year of life, the disease can occur at any age. Early-onset AD is sub-classified based
on age groups as infantile (<2 years), childhood (2–12 years) or adolescent (12–18 years).
Additionally, children with AD are more prone to developing other atopic diseases than
children without AD [22,23], and AD can be a first step in the sequential development of
other atopic manifestations later in life (food allergy, asthma and allergic rhinitis), in the
process of the “atopic march” [24–26]. Adult-onset occurs after 18 years of age. Recent
studies indicate a third class of AD that occurs after the age of 60 and is, therefore, termed
the elderly-type AD, sub-labelled as elderly-onset, relapsing and continuous [27–29].

Diagnostic criteria established for AD consist of basic features, such as pruritus,
lichenification, and chronically relapsing course, and personal and/or family atopic history
as well as minor features take into consideration less specific symptoms [30–32]. Disease
severity can be measured by various tools, estimating the extent of affected areas and
multiple types of symptoms to help assess and score clinical signs. Typically preferred are
the Scoring of Atopic Dermatitis Index (SCORAD) and the Eczema Area and Severity Index
(EASI) [33–35].

3. Pathogenesis of Atopic Dermatitis

There are numerous risk factors associated with the development of AD, from genetic
predisposition to environmental conditions. Family history of atopic diseases presents the
most prominent risk factor for AD. Research shows that the occurrence of any atopic disease
in one of the parents increases 1.5-fold the possibility a child developing AD. Moreover, the
risk is further increased 3-fold and 5-fold, respectively, if one or both parents suffer from
AD [36]. Several environmental risk factors have been proposed to enhance the prevalence
of AD, such as living in an urban setting, low UV light exposure, dry climate, Western
diet, repeated exposure to antibiotics in early childhood, as well as high level of household
education [37].

Pathophysiology of AD is very complex and not yet completely elucidated. Multiple
contributing factors, including epidermal barrier impairment, immune dysregulation and
alteration of skin microbiota, contribute to the disease. The integration of these factors,
with their different intensities and combinations, is thought to cause the varying clinical
presentations of AD [38].
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3.1. Epithelial Barrier Dysfunction and Immune Dysregulation

The skin barrier plays a major role in the protection from commensal and pathogen
penetration, forming a thin line between health and disease. Several factors contribute
to epithelial barrier dysfunction in AD, including mutations of genes that encode struc-
tural and functional proteins of the epidermis and epigenetic modifications affecting the
regulation of immune response and inflammatory processes [39]. Filaggrin is one of the
key epidermal proteins for production of a natural moisturizing factor and is essential for
maintaining stratum corneum hydration. Mutations in the filaggrin gene are found in about
half of patients with moderate to severe disease [39] and can be associated with early-onset
AD [40]. Deficit in filaggrin production also results in aberrant keratinocyte differentiation
and insufficient skin lipid content [41]. Skin lipids (e.g., ceramides, free fatty acids and
cholesterol) are vital for the maintenance of the epidermal barrier function, and thus are
responsible for prevention of TEWL and penetration of irritants, allergens and microbes.
Disbalance in the composition of skin lipids, as well as the reduction of the lipid content,
are associated with the development of AD [19,42].

Epidermal barrier disruption stimulates keratinocytes to release chemokines (thymus
and activation-regulated chemokine (TARC), macrophage-derived chemokines (MDC))
and cytokines (IL-1β, IL-25, IL-33 and thymic stromal lymphopoietin (TSLP)). This leads
to infiltration of leukocytes, primarily dendritic cells (DC), eosinophils and T-cells [43],
initiation of TH2 cell responses, as well as activation of skin-resident group 2 innate lym-
phoid cells (ILC2s), thus inducing inflammation [44–46]. TH2 cells release IL-4, IL-5, IL-13,
IL-25 and IL-31, which in turn activate B-cells to produce IgE molecules. ILC2s also release
IL-5 and IL-13 and can provide an additional boost to type 2 immunity and IgE produc-
tion [46]. Together with TH2 cells, IL-22-secreting TH22 cells play an important part in the
initiation and acute phase of AD [45], while the switch to TH1/TH17 response characterizes
a chronic disease [47]. Keratinocyte-expressed chemokines also recruit different dendritic
cell subtypes, including inflammatory dendritic epidermal cells (IDECs) and Langerhans
cells, which express high-affinity immunoglobulin-ε receptors (FcεR1s). Binding of IgE
antibodies to these receptors facilitates the uptake of allergens and triggers hypersensitivity
reactions [48]. Additionally, epithelial cell-derived IL-33 and TSLP and type 2 cytokines
can directly activate itch-sensory neurons to induce pruritus [49,50]. The dynamic interplay
between epithelial barrier dysfunction, type 2 immunity and pruritus is schematically
shown on Figure 2.

3.2. Dysbiosis of Skin Microbiota

The skin of patients with AD reveals considerable anomalies of the microbial com-
munities when compared to the microbiota of healthy subjects; however, it is not certain
whether these changes are the cause or the result of epidermal barrier dysfunction and
immune dysregulation. Shi et al. showed that 20 genera usually found on healthy individ-
uals also occupied the skin of AD patients [16]. However, the skin in AD is characterized
by an expressed microbial imbalance and reduced diversity, specifically manifested as
a decrease in the genera Cutibacterium, Streptococcus, Acinetobacter, Corynebacterium and
Prevotella, and a marked increase of Staphylococcus, especially of S. aureus [51]. The reduced
microbial diversity is particularly evident during severe flares of the disease, with the
reported composition of Staphylococcus usually reduced to a single S. aureus strain [18]. The
treatment and recovery reverted the microbiota to its pre-flare configuration [51].
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Figure 2. Epithelial barrier dysfunction, immune dysregulation and skin microbiota dysbiosis in 
initiation and progression of AD. Epithelial barrier dysfunction and stress from environmental and 
mechanical factors lead to skin barrier damage and enhanced epidermal permeability, which in turn 
increases microbial and allergen contact with the cutaneous immune system. Damaged keratino-
cytes activate immune mechanisms by releasing proinflammatory cytokines (IL-1β, TSLP, IL-25, IL-
33) and chemokines, mobilizing innate lymphocyte subsets and skin-resident dendritic cells (DCs). 
DCs attract and prime naive T-cells, promoting TH2/TH22 cell responses and inducing inflammation 
process. Type 2 cytokines (IL-4, IL-5, IL-13, IL-25) drive the inflammation, recruiting and activating 
other types of immune cells, such as eosinophils, mast cells and B-cells. The secreted molecules and 
proinflammatory cytokines act directly on cutaneous nerves and contribute to pruritus. Moreover, 
the inflammation further disrupts skin barrier and favors colonization by pathogens (S. aureus), ad-
ditionally inducing keratinocyte damage and boosting TH2-type response, thus supporting the dis-
ease cycle. The activation of TH1/TH17 cell responses in chronic disease induce tissue remodeling, 
increasing skin thickness and lichenification. IDEC—inflammatory dendritic epidermal cell, ILC2—
group 2 innate lymphoid cell, LC—Langerhans cell, TH1—TH1 cell, TH2—TH2 cell, TH17—TH17 cell, 
TH22—TH22 cell. 
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Figure 2. Epithelial barrier dysfunction, immune dysregulation and skin microbiota dysbiosis in
initiation and progression of AD. Epithelial barrier dysfunction and stress from environmental and
mechanical factors lead to skin barrier damage and enhanced epidermal permeability, which in turn
increases microbial and allergen contact with the cutaneous immune system. Damaged keratinocytes
activate immune mechanisms by releasing proinflammatory cytokines (IL-1β, TSLP, IL-25, IL-33)
and chemokines, mobilizing innate lymphocyte subsets and skin-resident dendritic cells (DCs). DCs
attract and prime naive T-cells, promoting TH2/TH22 cell responses and inducing inflammation
process. Type 2 cytokines (IL-4, IL-5, IL-13, IL-25) drive the inflammation, recruiting and activating
other types of immune cells, such as eosinophils, mast cells and B-cells. The secreted molecules and
proinflammatory cytokines act directly on cutaneous nerves and contribute to pruritus. Moreover,
the inflammation further disrupts skin barrier and favors colonization by pathogens (S. aureus),
additionally inducing keratinocyte damage and boosting TH2-type response, thus supporting the
disease cycle. The activation of TH1/TH17 cell responses in chronic disease induce tissue remodeling,
increasing skin thickness and lichenification. IDEC—inflammatory dendritic epidermal cell, ILC2—
group 2 innate lymphoid cell, LC—Langerhans cell, TH1—TH1 cell, TH2—TH2 cell, TH17—TH17 cell,
TH22—TH22 cell.

The disequilibrium of skin commensals might not sound like an ominous occurrence,
however, it instigates another set of problems. Because a balance normally ensures that
commensals remain benign and/or beneficial, a microbial shift provides growth space for
species whose greater numbers cause more harm than good (Figure 3). Consequently, newly
dominant strains can trigger skin inflammation and diseases. S. aureus is the principal
bacterial species associated with AD [52]. As an opportunistic pathogen, it is well adapted
to adhere to the skin, disrupt the epithelial barrier and trigger the host immune system, in
turn inducing skin inflammation [53,54]. While the carriage of S. aureus in healthy subjects
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is about 20%, the prevalence on the skin of patients with AD is increased and varies from
30% to 100%, depending on patient age, AD severity, as well as sampling and analysis
methods [55]. Additionally, the reported abundance of S. aureus in patients with AD was
70% on lesional skin and 39% on non-lesional skin or healthy skin of the same patient,
confirming the correlation between S. aureus and disease severity [55,56]. A recent study
identified differences in S. aureus strain structure isolated from AD skin lesions from that of
non-lesional skin: patients with severe AD tend to carry the clonal complex 1 (CC1) strains,
whereas asymptomatic individuals carry the CC30 strains [57]. The chronic persistence of
S. aureus on eczematous skin lesions and difficulties of eradicating it using antibiotics were
found to be associated with the prevalence of staphylococcal biofilm communities on the
skin of patients with AD. Indeed, a study by Di Domenico et al. confirmed the severity of
AD can be linked to biofilm formation by S. aureus [56]. A number of studies focused on the
interplay between S. aureus, epithelial barrier disruption and the immune system. Unlike
healthy skin, skin in AD is more permissive to S. aureus colonization due to its reduced
anti-microbial peptide (AMP) levels [58]. The reduced expression of AMPs, particularly
defensins and cathelicidins, can be the result of TH2-derived IL-4 and IL-13 cytokines [59].
It was also shown that S. aureus adheres more strongly to AD skin, due to the filaggrin
deficiency and deformed corneocytes of the stratum corneum [60]. Additionally, S. aureus
produces a number of different proteolytic enzymes and toxins, as well as stimulates the
expression of endogenous keratinocyte proteases, which can disrupt the integrity of the
skin barrier and enable penetration through stratum corneum [61,62]. Other toxins from
S. aureus can directly induce type 2 immune response by activating immune cells and
triggering the expression of the inflammatory mediators such as IL-4, IL-13, IL-22 and
TSLP [61].
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Several reports have demonstrated that Staphylococcus epidermidis overgrowth can also
be linked to AD pathogenesis. Usually perceived as a skin commensal essential in coordi-
nating the maturation of the immune system and combating pathogens, S. epidermidis is, in
certain conditions, able to contribute to the inflammatory reaction in AD [63]. Byrd et al.
found that, unlike single strain S. aureus communities linked to severe AD flares, more
heterogenous S. epidermidis strains dominated in patients with less severe symptom manifes-
tations [18]. A number of studies reported that not only Staphylococcus strains incite develop-
ment of AD. Previously known under the name Propionibacterium acnes, Cutibacterium acnes
is one of the most widespread skin commensals, playing a role in the skin defense mecha-
nisms [64]. However, C. acnes can also cause damage to the skin by enhancing S. aureus
cytolytic activity, thus inducing proinflammatory cytokine production [65]. The porphyrin
molecule coproporphyrin III (CIII) produced by C. acnes was found to induce S. aureus
aggregation and biofilm formation, suggesting the cooperation between C. acnes and
S. aureus [66].

In contrast to numerous studies on skin bacteria, reports on mycobiota diversity in AD
are scarce. As in healthy subjects, Malassezia species (especially M. globosa and M. restricta)
were predominant in patients with AD [12]. M. restricta dominated over M. globosa in pa-
tients with mild or moderate disease, while the ratio of the two species was equal in patients
with severe disease [12,67]. Malassezia species were shown to penetrate the epithelial barrier
of AD patients, causing activation of immune cells and skin inflammation [68]. In addition,
Malassezia allergens can trigger a specific IgE response, contributing to the disease [68]. As
for non-Malassezia fungi, Candida albicans, Cryptococcus diffluens and Cryptococcus liquefaciens
were detected more often in patients with AD than in healthy subjects [12]. However, the
role of these species in AD pathophysiology needs to be further elucidated.

Contrary to microbial communities being associated with inflammation incitement,
there is evidence that the presence of some microbes negatively corelates with AD pro-
gression (Figure 4). Scharschmidt et al. confirmed that early exposure to commensal
Staphylococci plays a role in antigen-specific tolerance that may prevent AD development in
mice [69]. Those findings were corroborated by a study in which decreased susceptibility to
AD was associated with early exposure of infants to Staphylococci commensals [70]. Studies
reported several species of Staphylococcus genus suppressing S. aureus and its effect on
disease progression. The coagulase-negative (CoNS) S. epidermidis, Staphylococcus hominis
and Staphylococcus lugdunensis successfully inhibited S. aureus colonization and biofilm
formation [71,72]. A similar effect was observed in more recent reports by Zipperer et al.
and Nakatsuji et al., who showed that both S. lugdunensis and S. hominis produce lantibiotics
that inhibit S. aureus growth [73,74]. Furthermore, an in vitro study demonstrated that a co-
infection of S. aureus with the Corynebacterium striatum, in comparison to exclusive S. aureus
infections, resulted in an S. aureus shift towards a commensal state [75]. In addition to
the C. striatum, byproducts from glycerol fermentation by Cutibacterium acnes also showed
S. aureus inhibition, without disrupting the skin microbiome balance [76]. Aside from
metabolites of bacterial commensals, the MgSAP1 protease secreted by Malassezia globosa
was shown to hydrolyze the S. aureus Protein A, thereby hindering its biofilm formation [77].

These findings provide evidence on the key role of skin microbiota in the pathogenesis
of AD. However, the current scientific knowledge is still lacking, and future research
efforts need to be directed towards fully understanding the composition of the microbial
ecosystem of the human skin, as well as the complex interactions regulating the host–
microbiota relationship in health and disease.
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Figure 4. Interplay between Staphylococcus aureus and skin microbiota. Several members of
Staphylococcus genus inhibit S. aureus growth and biofilm formation. Staphylococcus lugdunensis and
S. hominis suppress colonization of S. aureus by secreting antibiotics and lantibiotics. S. epidermidis
induces keratinocytes to produce anti-microbial peptides (AMPs) to eradicate S. aureus, as well
as produces protease glutamyl endopeptidase (Esp) which inhibits formation of S. aureus biofilm.
The MgSAP1 protease secreted by Malassezia globosa was shown to have a similar effect of disrupt-
ing S. aureus biofilm. In contrast, Cutibacterium acnes and its corpoporphyrin III molecule promote
S. aureus activity and aggregation, thus inducing S. aureus biofilm formation.

4. Treatment of Atopic Dermatitis

The AD management approach is based on disease severity, age and location. A
continuous daily emollient application to relieve symptoms and enhance skin hydration
represents a baseline therapeutical approach for both children and adults [78]. Preparations
such as petrolatum, physiologic lipids or ceramide-based lipids are known to reduce TEWL
and decrease bacterial colonization, which improves overall skin barrier function [79].
While standard aqueous creams show positive results in terms of symptom improvement,
pH-modified moisturizers significantly alleviate symptoms in AD and serve as a useful
treatment adjunct [80]. Emollients can also affect Staphylococcus species abundance and
microbiota diversity [81]. However, in the acute phase of the disease, application of potent
anti-inflammatory agents is required, with topical corticosteroids (TCS) representing the
first-line anti-inflammatory treatment [78]. Although highly effective in improving AD
symptoms, long-term use of corticosteroids is discouraged because of their side-effect
profile and subsequent patient-compliance issues [78,82]. At the beginning of the 21st
century, non-steroid topical calcineurin inhibitors (TCI) were introduced as an alternative to
TCS treatments for AD. Macrolide derivatives tacrolimus and pimecrolimus are calcineurin
inhibitors that prevent T-cell signal transduction and IL-2 transcription, thus suppressing
inflammation [83,84]. Unlike TCS, TCIs are suitable for long-term treatment, and use of
tacrolimus is recommended for the maintenance and reduction of relapses, often after
initial corticosteroid treatment [78]. In addition, tacrolimus showed a positive impact on
the skin microbiome in AD patients [85]. Antibiotics are included in AD treatment in cases
of bacterial superinfection, but due to antibiotic resistance and the potential negative effect
of antibiotics on commensal bacteria, this treatment method is not a long-term option [86].
Other therapeutic approaches include phototherapy with ultraviolet (UV) light, which
can reduce AD recurrence. Narrow band ultraviolet B (nBUVB) phototherapy has been
shown to decrease the S. aureus ratio in the skin microbiota [87]. Severe AD may require
hospitalization and systemic immunosuppressive treatment with cyclosporine A, a short
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course of oral glucocorticoids, methotrexate, azathioprine and mycophenolic acid or, as an
alternative, biologic therapy [88].

5. Probiotics and Prebiotics in Treatment of Atopic Dermatitis

Probiotics are live microorganisms with immunomodulatory features which provide
beneficial effects on the host’s well-being. Although most probiotic applications have
been targeted at gastrointestinal tract disorders, recent reports recognized a vast potential
of utilizing probiotics for promoting skin health and managing various skin conditions.
Over the last few years there have been scientific breakthroughs with reference to treating
AD using oral or topical probiotic cultures. A recent animal study found that orally
administered Lactobacillus paracasei KBL382 successfully ameliorates AD symptoms in
mice via modulating the immune response and gut microbiota [89]. Similar research was
conducted by Kwon et al., in which Lactobacillus sakei WIKIM30 isolated from kimchi and
orally delivered to mice resulted in stimulation of Treg cell generation and suppression
of TH2 inflammatory response, as well as in restoring the balance of gut microbiota [90].
Another animal study reported that administration of Lactobacillus rhamnosus IDCC 3201
tyndallizate (RHT3201) to mice resulted in less severe AD symptoms in comparison to
controls, together with dose-dependent reductions in dermatitis scores [91]. Furthermore,
experiments on mouse animal models by Kim et al. suggested oral administration of
β-glucan and Lactobacillus plantarum LM1004 inhibited TH2 cell responses and activated
Treg immunoregulatory functions, as well as increased relative abundance of butyrate-
generating microorganisms in the gut [92].

Along with the research on animal models, clinical trials in humans also showed
promising results regarding the oral use of probiotics in treating AD. One of the earli-
est publications in the field describes oral administration of a mixture containing two
Lactobacillus strains (lyophilized Lactobacillus rhamnosus 19070-2 and Lactobacillus reuteri
DSM 122460) to children with AD, throughout a period of six weeks in a double-blind
placebo-controlled crossover study. The treatment provided a moderate improvement in
the clinical severity of eczema [93]. L. rhamnosus [94–96] and L. plantarum CJLP133 [97] also
displayed a positive treatment efficacy on AD during clinical trials on children. Another
study reported successful treatment of AD patients using Lactobacillus fermentum VRI-033
PCC during a double-blind randomized placebo-controlled trial, with reduced SCORAD
index and change in AD severity compared to placebo-treated individuals [98]. Moreover,
Niccoli et al. efficiently treated pediatric AD patients with a lyophilized form of Lacto-
bacillus salivarious LS01, reporting a significant decrease in SCORAD value and significant
improvement in itching intensity when compared to the placebo control group, and both
therapy benefits persisting after suspension of treatment [99]. Although typically tested
oral probiotic formulations most often consisted of Lactobacillus strains, several studies
investigated the positive effects of other bacterial strains or mixtures of different probiotic
bacterial strains in management of AD. Matsumoto et al. reported that the administration
of Bifidobacterium animalis subsp. lactis LKM512 alleviated itch in AD patients and consid-
erably improved the quality-of-life scores when compared with the controls, suggesting
an antipruritic effect of B. animalis [100]. A probiotic mixture of Bifidobacterium lactis CECT
8145, B. longum CECT 7347, and Lactobacillus casei CECT 9104 was reported to reduce the
SCORAD index in AD patients compared with the control group [101], while a case report
using a mixture of Bifidobacterium lactis HN019, Lactobacillus acidophilus NCFM, Lactobacillus
rhamnosus HN001 and Lactobacillus paracasei LPC-37 described an evident response in treat-
ing severe AD with significant change in AD severity scores [102]. In fact, a meta-analysis
suggested the administration of probiotics has a positive influence on the treatment of
AD, with the greatest effect observed in studies using a mixture of different bacterial
species [103].

Along with studies on oral probiotics, which indirectly influence skin diseases, a
number of topical probiotic formulations have been proposed to ameliorate skin con-
ditions by suppressing inflammation and restoring skin microbiota balance. Nakatsuji
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et al. demonstrated that the topical application of commensal skin bacteria is effective in
protecting against pathogen species, with reduced S. aureus colonization due to selective
anti-microbial peptides secreted by commensal coagulase-negative Staphylococci, improve-
ment of clinical symptoms and decreased local inflammation [74,104]. A group of authors
also conducted a first-in-human topical microbiome transplantation after collecting the
commensal Roseomonas mucosa from healthy subjects. After a six-week therapy, significant
decrease in SCORAD and pruritus was noted, as well as reduction in disease severity
and no adverse effects or complications, which, consequently, signifies a lesser need for
topical steroids [105]. Interestingly, several studies also explored the effects of the topical
application of gut commensals for treating AD. A cosmetic lotion containing heat-treated
Lactobacillus johnsonii was linked to the reduction of S. aureus load on the skin of adult AD
patients and clinical improvement of AD symptoms [106]. Another report describes signifi-
cant improvement in skin barrier integrity, erythema, scaling and pruritus in patients with
AD after a 2-week topical administration of a cream consisting of sonicated Streptococcus
thermophilus [107]. Finally, Gueniche et al. found that topical ointment containing lysate
of Vitreoscilla filiformis, a Gram-negative bacterium found in thermal springs, which has
traditionally been used in treating dermatological diseases, also resulted in clinical im-
provement in patients with AD [108]. Even though not technically probiotics, the probiotic
bacteria preparations evidently have the ability to interact with the skin components and
alleviate AD symptoms.

Unlike the studies on probiotics, the research on prebiotics and synbiotics (combi-
nation of probiotics and prebiotics) in AD treatment is relatively scarce. Chang et al.
published a meta-analysis of six randomized controlled trial studies providing evidence
to support the use of synbiotics composed of mixed strains of bacteria for the treatment
of AD for children aged 1 year or older [109]. A double-blind randomized study by
Passeron et al. performed on children with AD using a prebiotic preparation as well as
synbiotic preparation (Lactobacillus rhamnosus Lcr35 plus prebiotic) showed both treatments
significantly improved AD symptoms, with no significant difference noted between the
two treatments [110]. A similar double-blind study was conducted by Aldaghi et al. on
AD infants that were administered either a synbiotic mix containing L. rhamnosus, L. euteri
and B. infantis or vitamin D3. The report confirmed both treatments significantly decreased
SCORAD scores when compared to the control group [111].

Although further investigation is needed, the results shown in these studies (Table 1)
warrant a potential interest in using probiotics and prebiotics as therapeutic treatment
in the management of AD. However, it should be noted that these potential therapies
are considered as Microbiotic Medicinal Products (MMPs). An MMP is any medicinal
product containing living, dead, fragments or components of the microbiota (i.e., bacteria,
yeasts, phages, etc.) with the purpose to prevent or treat human diseases through a
pharmacological, microbiological, neurological, immunological or metabolic mode of action,
or to make a medical diagnosis [112]. Although showing great promise for treating human
disease, including AD, the development of these products (especially live biotherapeutic
products, LBPs) is faced with many scientific, clinical and regulatory challenges [113].
The current set of requirements for a particular type of the product is not specifically or
uniformly defined for LBPs at the global level, so the acceptance criteria for the product
quality, efficacy, and safety are often unclear or inappropriate and eventually need to
be adjusted to an individual product. The most obvious issue arises when considering
the basic requirement for the pharmaceutical product, its sterility, that these therapies
evidently cannot achieve. Additionally, the manufacturing of LBPs is complex due to
batch-to-batch variations and many factors related to culture conditions and product
stability (viability, shelf life, genetic stability) that could influence bacterial properties,
consequently changing product efficacy or safety. Determining LBPs’ safety is different
from other medicines since the product itself does not reach the systemic circulation,
while its activities or metabolites may act directly or indirectly on (systemic) physiological
functions of the host, so toxicity is not always directly related to the dosage. Furthermore,
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the translation of data from animals to humans is almost impossible due to the holobiont
concept [114,115], a result of the coevolution of the microbiome and its human host that
cannot be reproduced in animal species. Clinical efficacy for LBPs can only be proven in
an independent trial of acceptable quality, using well-defined treatment conditions and
dosage and with preliminary defined, validated endpoints. As currently no standard
clinical trial format exists (products, target populations and application modes differ on a
case-by-case basis), proving efficacy in a standardized manner is quite difficult to achieve.
Many environmental factors (e.g., transport and storage conditions) as well as host-related
factors (e.g., health status, stomach pH, interference with diet, the composition of the
recipient microbiota, ethnicity, etc.) can affect the final trial outputs. Nevertheless, despite
the many challenges and uncertainties, it seems opportune and scientifically sound to
further advance both scientific tools and regulatory frameworks for the development of
these therapies, since the future products might offer unique therapeutic opportunities and
equip the medical community with additional means for combating major human diseases.

Table 1. Studies using probiotics and prebiotics in management of AD.

Study, Year Study Type Bacterial Strain Administration Animal Model Outcome Summary

Kim et al.,
2020 [93] mouse model L. paracasei KBL382 oral

NC/Nga mice
DFE- and

DNCB-induced AD

modulation of the immune
response and gut microbiota

Kwon et al.,
2018 [94] mouse model L. sakei WIKIM30 oral BALB/c mice

DNCB-induced AD

stimulation of Treg cell generation
and suppression of TH2

inflammatory response, restoring
the balance of gut microbiota

Lee et al.,
2016 [95] mouse model

L. rhamnosus IDCC
3201 tyndallizate

(RHT3201)
oral NC/Nga mice

DFE-induced AD

less severe AD symptoms in
comparison to controls,

dose-dependent reductions in
dermatitis scores

Kim et al.,
2019 [96]

rat/
mouse models L. plantarum LM1004 oral

Sprague-Dawley rats,
ddY mice

histamine-induced
AD

DNFB-induced AD

inhibition of TH2 cell responses
and activation of Treg

immunoregulatory functions,
increase of relative abundance of

butyrate-generating
microorganisms in the gut

Study, Year Study Type Bacterial Strain Administration Participants (Age) Outcome Summary

Rosenfeldt et al.,
2003 [97] human

lyophilized
L. rhamnosus 19070-2

and L. reuteri
DSM 122460

oral children
(1–13 y)

moderate improvement in the
clinical severity of eczema

Wickens et al.,
2012 [98] human L. rhamnosus oral infants reduced eczema prevalence

Wickens et al.,
2013 [99] human L. rhamnosus oral children

(<6 y)

significantly reduced cumulative
eczema prevalence, decrease in

SCORAD values and
atopic sensitization

Wu et al.,
2015 [100] human L. rhamnosus oral children

(4–48 mos.)
decrease of SCORAD values and

disease intensity

Han et al.,
2012 [101] human L. plantarum CJLP133 oral children

(12 mos.–13 y)
decrease of SCORAD values,

IFN-γ and IL-4

Weston et al.,
2005 [102] human L. fermentum

VRI-033 PCC oral children
(6–18 mos.)

change in AD severity compared
to placebo-treated individuals

Niccoli et al.,
2014 [103] human L. salivarious LS01 oral children

decrease of SCORAD values and
significant improvement in

itching intensity, both therapy
benefits persisting after
suspension of treatment

Matsumoto et al.,
2014 [104] human B. animalis subsp.

lactis LKM512 oral adults
alleviated itch in AD patients and

considerably improved the
quality-of-life scores
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Table 1. Cont.

Study, Year Study Type Bacterial Strain Administration Participants (Age) Outcome Summary

Navarro-Lopez et al.,
2018 [105] human

B. lactis CECT 8145,
B. longum CECT 7347,

and L. casei CECT 9104
oral children

(4–17 y)
decrease of SCORAD values in

patients with moderate AD

Lise et al., 2018 [106] human

B. lactis HN019,
L. acidophilus NCFM,
L. rhamnosus HN001

and L. paracasei LPC-37

oral children
evident response in treating
severe AD with significant

change in AD severity scores

Kim et al., 2014 [107] human
Lactobacillus and
Bifidobacterium

species
oral children and adults

(1 mo.–65 y) decrease of SCORAD values

Nakatsuji et al.,
2017 [108] human

topical application
of commensal
skin bacteria

topical adults

protective effect against
pathogen species (reduced

S. aureus colonization due to
selective AMPs secreted by

commensal CoNS),
improvement of clinical

symptoms and
decreased inflammation

Nakatsuji et al.,
2021 [80] human S. hominis A9 (ShA9) topical adults

fewer adverse events associated
with AD, inhibited expression

of mRNA for psmα

Myles et al.,
2018 [109] human R. mucosa topical children and adults

significant decrease in SCORAD
and pruritus, reduction in

disease severity and no adverse
effects or complications

Blanchet-Rethoré et al.,
2017 [110] human heat-treated

L. johnsonii topical adults
clinical improvement of AD
symptoms in patients with

moderate AD

Di Marzio et al.,
2003 [111] human sonicated

S. thermophilus topical adults
significant improvement in skin

barrier integrity, erythema,
scaling and pruritus

Gueniche et al.,
2008 [112] human lysate of V. filiformis topical children and adults

clinical improvement in
patients with AD, decreased

SCORAD values and pruritus

Chang et al.,
2016 [113] human multiple strains

of bacteria topical children
(>1 y) decrease of SCORAD values

Passeron et al.,
2006 [114] human L. rhamnosus Lcr35

plus prebiotics topical children
(>2 y)

improved AD symptoms and
decreased SCORAD values

Aldaghi et al.,
2020 [115] human

L. rhamnosus, L. euteri
and B. infantis or

vitamin D3
topical infants significantly decreased

SCORAD values

6. Conclusions and Future Perspectives

AD is a complex, multifactorial disease. Although not a life-threatening condition, AD
has a severe impact on the patient’s quality of life and is often associated with numerous
medical and mental health comorbidities. Our understanding of AD and its pathophysi-
ology has made major advances in the last decade, with detailed insights on the complex
interplay between epidermal barrier dysfunction and immune system activation. Moreover,
technological advances improved our ability to identify and characterize skin microbial
communities, enhancing our knowledge on the disrupted host–microbiota relationship
in AD. Recent reports provided evidence for introducing skin microbiota dysbiosis as
one of the key features of the disease initiation and progression, paving the way for the
development of novel therapeutic interventions. Probiotic and prebiotic preparations, as
well as skin microbiota transplantation, are finding their way to clinical applications with
promising results in AD management. However, more studies are needed to evaluate the
influence of systemically and locally applied therapies to skin microbiota as well as to
assess the mechanisms through which the effects are achieved. Additionally, the major
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challenge will be to translate these research findings into innovative new therapies and to
overcome both scientific and regulatory challenges in developing microorganism-based
medicinal products with an intended use in patients with AD.
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